FurnXpert Heat Loss Software – Insulation Design Module

Specialisis in Thermal Applications

www.furnxpert.com

FurnXpert Refractory Heat Loss software offers the ability to run Heat Loss calculations through multiple layers of refractory. The results constitute temperature profile from the hot surface to the cold surface, Junction Temperatures, Heat Flux and Heat Storage. The analysis can be performed on a straight or curved surfaces. Transient analysis to determine temperature rise with time can also be performed with the Transient module.

We have come up with a new module *FurnXpert Insulation Design* which extends the software to perform insulation design for various applications. The design criteria takes into account safe outside skin temperatures, target heat flow rate, energy savings, and economics.

The presentation is prepared to demonstrate the capabilities and features of Insulation Design Software. The slide indexing are as follows

- Slide 4 6 The over view of the original software
- Slide 7 The over view of the new module
- Slide 8 9 Cases for Target Outside Temperature Criteria 1.
- Slide 10 11 Cases for Target Heat Flow Rate Criteria 2.
- Slide 12 Case for Fuel Costs and Savings Criteria 3.

V FURNXPERT HEATLOSS SOFTWARE 2023	- 🗆 ×
Eile Edit Jools Help Image: Second state Image: Second state Click to work frequency Home Tab Calculation Results Pr created file	
Unit System Metric Watt ~ Select Unit Accuracy High ~	t System – Only before creating a new Analysis
Gas Convection on Hot Side SETUP FURNAC Check this to enable Gas Convection On Hot Side ULA NAC ULA NAC CompAS Controls, Inc. P O Box 61825 Sunnyvale, CA 94085 Ph: (724) 388-0577 info@furnxpert.com www.furnxpert.com Were Lice	T E of SETTING UP and SIMULATING industrial furnaces. The software has been developed to aid process engineers and furnace operators configure their furnaces, select parts, and run what- if analysis to determine the best furnace operating parameters. Cosystems CompAS Controls, two body furnaces, written
ANALYSIS # CUSTOMER	EQUIPMENT
ENG, INITIALS LOCATION	DATE
Jnit: Metric Watt Analysis #: Company: Project:	

😿 FURNXPERT HEATLOSS SOFTWARE 2023	×
<u>File Edit Tools Help</u>	ITS
Home Tab C Click to save project in a file	For Forced convection put velocity of air. Emissivity default value is 0.92
Surface Name Wall Porous Gas Air Surface Orientation Vertical	Refractory List Manufacturer Product Class Max Lim D 1 B & W SR 99 (3300F) B & W Firebrick 1815 30 2 B & W 80 B & W Firebrick 1538 22
Hot Side Temp 1315 °C Surface Type Ambient Temp 32 °C °C Inside Radius 1100 mm Surface Area m²	Curved and Straight wall can be analyzed in the same form just by changing selection
Layer Info	Results H-Temp C-Temp A-Temp H-Loss H-Storage C C C watt/m ² MJ/m ²
1 2 147, Carbon Steel 1.0% Carbon Steel V Select	
2 3 4 Select 4 Select Select Select Select Select	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
5 Select	
6 Select	
7 Select	
8 Select	
9 Select	⁹ Enter Data or by selecting a existing file
10 Click Calculate Select	¹⁰ the fields will be automatically populated
	Total
Calculate Include Graph in Report	✓ Add to Results Clear
Unit: Metric Watt Analysis #: Company: Project:	.:

FURNXPERT H	EATLOSS SOFTWAR		Plo	ot Shov	ws Te	mpera	ature Profile ir	n the refrac	ctory l	layer	s.
Home Tab Cal	culation Result RESU	JLTS Data Plot									
Home Tab	RESUB RESU	Oata Plot Cold Side Info			- Refracto	ory List					
Surface Name	Wall	Natural Convect	tion O Forced Conve	ection			Ref Name	Manufacturer	Product Class	Max Lim	D, ^
Porous Gas	Air ~	Air Velocit	y	m/s		1 B	& W SR 99 (3300F)	B & W	Firebrick	1815	30
Surface Orientation	Vertical ~	Emissivity	0.92				& W 80	B & W	Firebrick	1538	22
		Surface Type			Þ	3 Н	-W Superduty Alamo	Harbison Wa	Firebrick	1427	23
Hot Side Temp	1315 °C	O Flat	Curved			4 A	P Green Empire Hi Duty	AP Green	Firebrick	1371	20
Ambient Temp	32 °C	Inside Rad	ius 1100	mm		5 J-	M Bubble Alumina	J-M	Insulati	1788	12
		Surface A	rea	m ²	<			100		1010	<u>``</u>
1 2 2 3 4 5 6 7 8 For Ea	m		Carbon Steel V Sa V Sa V Sa V Sa V Sa V Sa V Sa V Sa	elect elect elect elect elect elect elect elect	1 2 3 4 5 6 7 8 9 10		C-Temp °C 1315 1292 1315 1292	A-Temp H-L *C wat 	oss t/m ²		orage 1/m ² 10
					Total				327,524		10
Calculate	Include Graph in Report		Overall He	eat Lo	ss an	d Hea	t Storage	Add to Results			Clear
Init: Metric Watt Ana	Iysis #: Company: Proje	ct:									

FURNXPERT HEATLOSS SOFTWARE 20	2 3			_		×
File Edit Tools Help	The design crite	eria - Current	ly 3 – will be exter	ided to more		
Home Tab Calculation Results Property I	Data Plot					
Ambient Temp	Cold Side Info	t/s 6 0	Kness Materia Image: Strategy of the	al # of Layers	Select Select Select Select Select Select Select Select Select Select	
					_	
Case Insulation Surface thickness [in] Temperatur	Heat Flow re [°F] [btu/hr/ft²]	Efficiency [%]	Cost [\$/ft²/yr] Savings	[\$/ft²/yr]		
•						
nit: English Analysis #: Company: Project:						

Edit	Tools He	lp							
ê 🛃	🛃 🕐 🛙	1 📆	Cri	teria 1: Target o	old side tempe	rature			
ome Tab	b Calculat	ion Results	Property Data P	Jesign	•				
	-			Calcul	ate Layer Info	Insulation La	ayers Selection.	Layer 1 Va	arying
Design		arget Cold Side Tem			Thick	ness	Material # of Lay	vers 2 🔨	/
	L	50 °F	Target Heat Loss	btu/ft²/hr	1 1.25	✓ V	126 , AP Green block mix	:, Light Castal 🗸	Select
Fuel Ty			Target Cold S	Side Temp	2 0.25		130 , Kaiser plastic ram T	9 , Plastics 🗸 🗸	Select
Heat Co					3	V		~	Select
Heating	g Efficiency		Hot Side & Am	iblent temp	4			~	Select
Hot Sid	e Temp 8	00	°F Cold Side Info		5			~	Select
Ambien	t Temp 7	0	°F Air Veloc	ity 0 f	t/s6			~	Select
Number	r of Cases 5	0 🗘	Emissivity	0.92	Base	Material Info		~	Select
	Material Info	•							Select
Materi	ial Carbo	on Steel	~ • •	lat O Curv	ed 9				Select
Thick	ness 0.025	in in	Inside	e Radius	10		Desulta		Select
Surfac	ce Orientation	Vertical	~			``	Results		Jeicol
	1					V	/		
	Case	Insulation thickness [in]	Surface Temperature [°F]	Heat Flow [btu/hr/ft²]	Efficiency [%]	Cost [\$/ft²/yr]	Savings [\$/ft²/yr]		
	1	0.025	626	2,992	0	Targe	t Reached		
	2	1.250	172	246	92	7	-	T	
	3	1.500	160	210	93	-	-		
•	4	2.000	150	183	94	-	-		

RNXPERT HEATLOSS SOFTWARE 2023	
<u>E</u> dit <u>T</u> ools <u>H</u> elp	
🗳 🛃 🥔 💷 📆 👘 Criteria 1: Target d	cold side temperature
ome Tab Calculation Results Property Data Plot	
Calculate	
Design Criteria Target Cold Side Temparture Target Design Temp 150 °F Target Heat Loss btu/ft²/hr	Thickness Material # of Layers 2 ~
Target Design Temp 150 °F Target Heat Loss btu/ft²/hr Fuel Type \$ /// ft²/hr	1 1.25 V 126 , AP Green block mix , Light Castai V Select
Heat Content Target Cold Side Temp	2 0.25 V 130 , Kaiser plastic ram T9 , Plastics V Select
Heating Efficiency Hot Side & Ambient Temp	3 V Select
	4 V Select
Hot Side Temp 800 °F Cold Side Info	5 V Select
Ambient Temp 70 °F Air Velocity 0 ft/s	3 6 V Select
Number of Cases 50 Emissivity 0.92	Base Material Info
Base Material info	V Select
Material Carbon Steel V	9 V Select
Thickness 0.025 in Inside Radius	10 Results Select
Surface Orientation Vertical ~	
Case Insulation Surface Heat Flow	
thickness [in] Temperature [°F] [btu/hr/ft ²]	Efficiency [%] Cost [\$/ft²/yr] Savings [\$/ft²/yr]
27 6.500 153 192 28 6.750 153 190	94
29 7.000 152 189	
30 7.250 152 187	94 Target Reached
	94
31 7.500 151 185	
31 7.500 151 185 32 7.750 150 184	94 — —
	94 94

	ATLOSS SOFT <u>H</u> elp	W A R E 2023					- 0	
	Ka 🔁		Criteria 1: Ta	rget heat flow ra	ate			
Home Tab Calcu Design Criteria	Ilation Results	Property Data Plo	7 /		Insulation	Layers Selection		g
Target Design Temp	Id Side Temp	Target Heat Loss 12	5 btu/ft²/hr \$/Mcf	1 [1.25] 2 [0.25]		126 , AP Green block mix 130 , Kaiser plastic ram TS	, Light Castal 🗸 Select	
Heating Efficiency		Hot Side & Ar	mbient Temp	34			SelectSelect	_
Hot Side Temp Ambient Temp	800	°F Cold Side Info °F Air Veloc		ft/s			SelectSelect	_
Number of Cases Base Material Info	50	Emissivity	0.92	Bas	e Material Info		SelectSelect	
Thickness 0.0		V () F	e Radius	ed 9		Results	SelectSelect	
Surface Orientation	n	~						_
Case	Insulation thickness [in]	Surface Temperature [°F]	Heat Flow [btu/hr/ft²]	Efficiency [%]	Cost [\$/ft²/yr]	Savings [\$/ft²/yr]		^
	2 1.250	172	246	92	-	-		
	3 1.500	160	210	93	-	-		
	4 1.750	150	183	94	-	-		
	5 2.000 6 2.250	143		Target Rea	ched			
	7 2.500	137	133	96		-		
	8 2.750	127	122	96	-	-		
*								

URNXPERTHEA <u>E</u> dit <u>T</u> ools <u>H</u>	ATLOSS SOFT elp	W A R E 2023					-	
🖻 🔒 🕘 I 🛛	1		Criteria 2: Tai	get heat flow rate	e			
Home Tab Calcula	tion Results	Property Data Pla	Design			ayers Selection.	Layer 2 V	arying
Design Criteria	Target Heat Flow Rate	e ~	Calcul	ate Layer Info Thickne	ess	Material # of Lay	ers 2 ~]
Target Design Temp	۴	Target Heat Loss 12	5 btu/ft²/hr	1 1.25		126 , AP Green block mix	, Light Castal 🗸	Select
Target Cold	I Side Temp	Lel Cost	\$/Mcf	2 0.25	V ⊻	130 , Kaiser plastic ram T9) , Plastics 🗸 🗸	Select
riedi Conteni		Hot Side & Ar	nhient Temp	3	V		~	Select
Heating Efficiency		TIOU SIDE & AI		4	V		~	Select
Hot Side Temp	800	°F Cold Side Info		5	V		~	Select
Ambient Temp	70	°F Air Veloc	ity 0 f	t/s6			~	Select
Number of Cases	100 🜲	Emissivity	0.92	Base	Material Info		~	Select
Base Material Info	•						~	Select
Material Carb	on Steel	~ • F	lat O Curv	ed 9	v			Select
Thickness 0.02	5 in	Inside	e Radius	10		Results		Select
Surface Orientation	Vertical	~				Results		John
	l - l t	0.4	Line Rout		<i>V</i>		1	
Case	Insulation thickness [in]	Surface Temperature [°F]	Heat Flow [btu/hr/ft²]	Efficiency [%]	Cost [\$/ft²/yr]	Savings [\$/ft²/yr]		
83	20.500	130	129	96	-	-		
84	20.750	130	128	96	-	-		
85	21.000	129	1	Target Read	ched -	-		
86	21.250	129	1111111			-		
87	21.500	129	126	96	-	-		
89	22.000	128	125	96	-	-		
•								

File Edit Tools Help Criteria 3: Yearly Cost and Savings Insulation Layers Selection. Design Create Property Date Insulation Layers Selection. Design Create Taget Heat Loss but/Rth/rr Insulation Layers Selection. Taget Design Temp Heat Cost 5 V Select Fuel Type Toget Heat Loss but/Rth Cold Sde Info Base Material Info Select Number of Cases O Cold Sde Info Cold Sde Info Select Base Material Info Select Select Curved 9 Cold Sde Info Select <th>😥 F U</th> <th>URNXPERT HEATLOSS SOFTWARE 2023</th> <th></th> <th>- 0</th>	😥 F U	URNXPERT HEATLOSS SOFTWARE 2023		- 0
Home Tab Calculation Results Property Data Insultation Layers Selection. Design Citeria Savings Calculate Layer Ho Insultation Layers 2 \rightarrow Target Design Terror Target Heat Loss bturft/tr Image: Calculate Layer Ho Image: Calculate Image: Calculate <t< td=""><td><u>F</u>ile</td><td><u>E</u>dit <u>T</u>ools <u>H</u>elp</td><td></td><td></td></t<>	<u>F</u> ile	<u>E</u> dit <u>T</u> ools <u>H</u> elp		
Select Fuel Type Nateral area Select fuel Type Nateral area Advertal area Advertal area Advertal area Select Select Fuel Type Ing Efficiency 60 Hot Side & Ambient Temp Ing Efficiency Select 3 V Select Hot Side Temp 900 T Cold Side Info Ar Velocity Select Select Select Select V Select Select Number of Cases 20 Image finder Ing Efficiency Image finder Select	i 🗈 :	😂 🛃 🥔 💷 📜 Crite	eria 3: Yearly Cost and Savings	
Material Carbon Steel Image: Carbon Steel Ima		Home Tab Calculation Results Property Data PI Design Criteria Savings <	Calculate Layer Info btu/ft²/hr Insulation \$/Mcf 1 2 0.25 0 ft/s 0.92 Base Material Info	Material # of Layers 2 130. Kaiser plastic ram T9. Plastics Select 126. AP Green block mix , Light Castal Select Select Select
Case thickness [in] Temperature ["F] [btu/hr/ft²] Efficiency ["k] Cost [s/nt-/yr] Savings [s/nt-/yr] • 1 0.025 626 2,992 0 194 0 • 1 0.025 626 2,992 0 194 0 • 1 1,545 48 100 94 • 3 0.250 293 692 77 45 149		Material Carbon Steel Flat Thickness 0.025 in Inside Radii 	O Curved 9	Select
Case thickness [in] Temperature [*F] [btu/hr/ft2] Enderby [%] Cost [s/it/9yi] Savings [s/it/9yi] M 1 0.025 626 2,992 0 194 0 M 1 1.250 451 1,545 48 100 94 M 3 0.250 293 692 77 45 149		Insulation Surface Heat	Flow	
2 1.250 451 1,545 48 100 94 3 0.250 293 692 77 45 149		Case thickness [in] Temperature [°F] [btu/	hr/ft] Endency [%] Cost [\$/11/9yr]	
3 0.250 293 692 77 45 149				
		•		